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Using previously presented magnetic inorganic/organic magnetic nanocomposites, the adsorption of 

two known commercial-available pesticides (active ingredients deltamethrin and thiamethoxam, 

respectively) was achieved. The differences in adsorption observed can be explained by the reduced 

affinity of the nitro group in the ionized form from thiamethoxam towards the carboxyl groups from 

chitosan. From the kinetics studies it was determined that in case of thiamethoxam adsorption process 

is exothermic in nature, while in the case of deltamethrin the process is endothermic. The Sips isotherm 

was more suitable to describe the adsorption of pesticides on prepared adsorbents. The maximum 

adsorption capacity determined for the developed material was 247.12 mg/g (for deltamethrin) and 

53.29 mg/g (for thiamethoxam). 
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Pesticides are a potential concern for aquatic life and ecosystems, as well as for human health, being a class of water 

pollutants with a considerably complex structure. They are usually named by their chemical names, active ingredient names 

or product names. Usually products have active ingredients and adjuvants. 

On insecticide’s market there are known imidacloprid, thiamethoxam, clothianidin, dinotefuran, acetamiprid, thiacloprid, 

and nitenpyram. For thiamethoxam there is a lack of literature regarding the removal and degradation from waters comparing 

with the other compounds, especially using adsorbents with nanostructures. There are some studies the degradation of 

thiamethoxam in different type of soils [1] and studies which present the potential impacts to aquatic systems [2]. 

Thiamethoxam is a bio-accumulative compound, with ability to harm liver, kidney and other organs, even at human, and 

hard to remove [3]. Our group previously demonstrated the influence of thiamethoxam accumulation in physiological 

indices of Pelophylax ridibundus (Pallas, 1771) [4].  

Another group of worldwide used pesticides is the class of pyrethroids, with high risk for the aquatic, environment 

especially for the fishes [5]. This class is divided into two groups according to their chemical structure: type I (alletrin, 

permethrin, piretrin) and type II (deltamethrin, spermethrin) [6]. In the case of deltamethrin, there are studies proving it is 

a compound which can be bio-accumulated and often toxic [7].  

Several published studies describe different methods of degradation or removal pesticides from different classes, such 

as photocatalysis [8], adsorption [9] or biodegradation [10].  

In the present work is described the facile removal of pesticides from the neonicotinoids and pyrethroids classes using 

magnetic nanoscale core-shell composites, also presenting the kinetic aspects involved in the pesticide up-take.  

 

Experimental part 

Pesticides  

The registered formulations of two pesticides commonly applied in agriculture were used: Decis Expert 100 EC® 

(deltamethrin 100 g/L, Bayer, Leverkusen, Germany) and Actara 25 WG (thiamethoxam 25% w/w, Syngenta, Basel, 

Switzerland).  
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Analytical methods 

Deltamethrin and thiamethoxam pesticides were determined and quantified by liquid chromatography using an Agilent 

1260 Infinity series LC system (Agilent Technologies), equipped with a time-of-flight mass spectrometer (TOF-MS) 

detector, a quaternary pump and autosampler. Elution was achieved by an isocratic program with the mobile phase 

consisting of a mixture of ultrapure water with 0.1% acetic acid/acetonitrile (95:5) (v/v) at 0.3 mL/min flow rate.  

Deltamethrin and thiamethoxam were quantitatively determined using calibration curves built with the concentrations 

25, 50, 100, 200 and 400 ppm. For the highest concentration, 400 ppm, it was necessary a 50% dilution in order to be kept 

in the linearity domain. 

 

Pesticide solutions and adsorption experiments 

The aqueous solutions were obtained by dissolving Decis Expert 100 EC® and Actara 25 WG in distilled water, to obtain 

stock concentrations of 400 mg/L (active substance). All the other concentrations used in the study were obtained by 

dilution. For the adsorption experiments, the batch technique was applied. A typical experiment was conducted by weighting 

0.02 g of adsorbent materials and mixing with 20 mL of pesticide solution (at a concentration of 200 mg/L) into glass tubes. 

The test tubes were introduced in a test tube rotating shaker (GFL 3025) for different amount of time in order to evaluate 

the adsorption process evolution in time. The encoding of samples collected at different time are: T1 – 1 hour, T2 – 3 hours, 

T3 – 5 hours, T4 – 8 hours, T5 – 24 hours and T6 – 48 hours. In order to preserve the relevancy for real conditions, solution 

pH was adjusted to 7. At the end of the reaction time, tubes content was filtered through 0.45 µm syringe filters and the 

remaining pesticide content was evaluated using HPLC. Each experiment was carried out in triplicate, and the average 

values were used as results. The amount of pesticides retained on the adsorbent at a time t was calculated by the following 

equation: 

                                                                           𝑞𝑡 =
(𝐶0−𝐶𝑡)×𝑉

𝑚
                                     (1) 

where: C0 and Ct are the initial concentration and the concentration of the pesticide at the time t in the solution (mg/L), V is 

the volume of the solution (L), and m is the amount of the adsorbent (g) [11]. 

For the evaluation of the adsorption equilibrium, 0.02 g of adsorbent and mixed with 20 mL pesticide solution 

(concentrations ranging from 10 to 200 mg/L) into glass tubes for 10 h in order to reach adsorption equilibrium. Adsorption 

vials content was filtered through 0.45 μm syringe filters and the filtrate was submitted to analysis. Each experiment was 

carried out in triplicate, and the average values were used as results. The amount of pesticide retained on solid surface was 

calculated by equation: 

                                                                                 
(𝐶0−𝐶𝑒)×𝑉

𝑚
                                (2) 

where: C0 and Ct are the initial concentration and the concentration of the pesticide at equilibrium (mg/L), V is the volume 

of the solution (L), and m is the amount of the adsorbent (g) [12]. 

 

Results and discussions 

According to literature and NIST mass spectra, the main five mass fragments for deltamethrin are 181, 253, 77, 93, and 

91. The characteristic peak for deltamethrin was found to be 284, respectively 285 for the protonated fragment M+. For the 

quantitative analysis it was calculated the cumulative peak area for both m/z fragments, 284 and 285, by mathematical 

integration within the limits 283.4 - 285.7 m/z. Based on known concentrations and calculated peak areas, it was constructed 

a calibration curve for deltamethrin. A similar approach was used for thiamethoxam solutions. The results (Table 1, 

graphically represented in Fig. 1) suggest that the adsorption experiments reached an adsorption plateau, after which 

continuing the adsorption process becomes inefficient.  

                                                     

 
Fig. 1. Graphical 

representation of the 

adsorption process at different 

contact times 
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Table 1 

ADSORPTION OF SELECTED PESTICIDES AT DIFFERENT CONTACT TIMES (VALUES REPRESENTS  

PESTICIDES REMAINING  IN THE SOLUTION AFTER DIFFERENT CONTACT TIMES) 

Encoding Contact time (hours) Deltamethrin (mg/L) Thiamethoxam (mg/L) 

T0 0 200 200 

T1 1 194.1 187.6 

T2 3 118.2 179.8 

T3 5 53 168.5 

T4 8 48.9 151 

T5 24 41 142.1 

T6 48 30 130.2 

 

 The differences in adsorption (visible in Fig. 1) can be explained by the reduced affinity of the nitro group in the 

ionized form from thiamethoxam towards the carboxyl groups from chitosan. 

The kinetic parameters are useful for the prediction of adsorption parameters, which are related with efficiency of 

adsorption. To determine the adsorption rate of thiamethoxam and deltamethrin on the prepared adsorbent three kinetic 

models such as Lagergren-first-order, pseudo-second-order kinetic models and intra-particle mass transfer diffusion model 

were applied in order to get insight on the adsorption process dynamics (a more detailed discussion regarding the kinetic 

models being previously presented [12]). The linear forms of these models were fitted based on the experimental data. 

Linear regression was used to determine the best fitting kinetic model, and the method of least squares is used for finding 

the parameters of the kinetic models (Fig. 2). The calculated kinetic constants and related coefficient of determination (R2) 

are presented in Table 2.  

 
Table 2 

VALUES OF THE KINETIC AND DIFFUSION PARAMETERS CHARACTERIZING PESTICIDE SORPTION 

 ON THE USED ADSORBENT FOR THE THREE MODELS 

Model Parameter 
Pollutant 

Thiamethoxam Deltamethrin 

P
se

u
d

o
-f

ir
st

 

o
rd

er
 m

o
d

el
 k1 (min-1) 

0.24834 

 

0.11096 

 

qe1 (mg/g) 
194.9552 

 

80.78166 

 

qexp (mg/g) 180.32 80.73 

R12 0.9586 0.972 

P
se

u
d

o
-

se
co

n
d

 

o
rd

er
 

m
o

d
el

 k2 (g mg–1 min–1) 0.002685 0.001846 

qe2 (mg/g) 176.9912 78.80221 

qexp (mg/g) 180.32 80.73 

R22 0.99631 0.98972 

In
tr

ap
ar

ti
cl

e 

d
if

fu
si

o
n

 m
o

d
el

 

ki1 (mg g-1min-0.5) 113.33 15.10 

ki2 (mg g-1min-0.5) 4.63 4.63 

C1 (mg/g) 109.35 137.37 

C2 (mg/g) 137.3728 34.12 

Ri12 0.99254 0.98135 

Ri22 0.91185 0.98424 

 

 

From Figure 2 it was observed that the best fit to the experimental kinetic data and closest to the theoretical equilibrium 

values correspond to first order model. The first order model basically relies on the sorption capacity and the good 

concordance with experimental data suggesting that the adsorption mechanism might be a physisorption process. Regarding 

the intraparticle diffusion model, two stages can be observed in the adsorption process of pesticides on chitosan adsorbents. 

The high value of correlation coefficients for each stage show that intraparticle diffusion model favorably approximates the 

adsorption process. However, as the plots does not reach origin, it means that intraparticle diffusion is not the only rate-

limiting step. The first stage of the plot (Fig. 2) is typically attributed to a fast-external surface adsorption. The second 

slower part shows a gradual adsorption stage due to intraparticle diffusion larger pesticide molecules and as a consequence 

of decreasing the concentration gradient.The whole behavior of the solid-pollutant system allows us to assume a 

combination of intraparticle diffusion and surface adsorption occurred simultaneously.  
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Fig. 2 Kinetic model of pesticide adsorption: a) pseudo-first order;  

b) pseudo-second order; c) intraparticle diffusion model 

 

An adsorption isotherm provides a relationship between the solute concentration in the solution and the amount of 

pollutant adsorbed on the solid phase when the two phases are at equilibrium. The adsorption isotherm experimental data 

of pesticides were fitted by three common adsorption models: Langmuir, Freundlich and Sips (which is a combination of 

Langmuir and Freundlich) [12]. The theoretical parameters of adsorption isotherms along with regression coefficients (R2) 

are presented in Table 3.  

 
Table 3 

VALUES OF THE KINETIC AND DIFFUSION PARAMETERS CHARACTERIZING PESTICIDE SORPTION 

ON THE USED ADSORBENT FOR THE THREE MODELS 

Model Parameter 
Pollutant 

Thiamethoxam Deltamethrin 

P
se

u
d

o
-f

ir
st

 

o
rd

er
 m

o
d

el
 k1 (min-1) 

0.24834 

 

0.11096 

 

qe1 (mg/g) 
194.9552 

 

80.78166 

 

qexp (mg/g) 180.32 80.73 

R12 0.9586 0.972 

P
se

u
d

o

-s
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n

d
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rd
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m
o

d
el

 k2 (g mg–1 min–1) 0.002685 0.001846 

qe2 (mg/g) 176.9912 78.80221 

qexp (mg/g) 180.32 80.73 

R22 0.99631 0.98972 

In
tr
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ar

ti
cl

e 

d
if

fu
si

o
n

 m
o

d
el

 

ki1 (mg g-1min-0.5) 113.33 15.10 

ki2 (mg g-1min-0.5) 4.63 4.63 

C1 (mg/g) 109.35 137.37 

C2 (mg/g) 137.3728 34.12 

Ri12 0.99254 0.98135 

Ri22 0.91185 0.98424 
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Fig. 3 Experimental data fitted according to Sips equation – influence of temperature on the adsorption process:  

a – thiamethoxam and b – deltamethrin. 

 

The Langmuir parameters were used to assess the adsorption efficiency and affinity between the sorbate and sorbent 

using the separation factor (RL): 

 

𝑅𝐿 =  
1

1+𝑏𝐶0
                                                                    (3) 

 

where C0 (mg/L) represent the initial phenol concentration and b (L/mg) is the Langmuir constant. 

The values of RL at different temperature and initial concentrations for both pollutants fall between 0 and 1 (Table 4) 

which demonstrate that adsorption process is favorable especially at higher concentrations. Also, from the values of 

Freundlich isotherm parameter (1/n) which are below unity regardless the operating conditions it results a favorable 

adsorption. 

 
Table 4 

VALUES OF THE SEPARATION FACTOR AT DIFFERENT TEMPERATURES  

FOR THE TWO PESTICIDES STUDIED 

Pesticide/Temperature 10°C 20°C 30°C 

D
el

ta
m

et
h

ri
n

 

0.79251 0.9012 0.74887 

0.80362 0.89028 0.89714 

0.73253 0.74166 0.43495 

0.731 0.62311 0.77104 

0.64852 0.50713 0.83956 

0.58394 0.39048 0.47482 

0.52546 0.27097 0.54198 

0.43365 0.20782 0.17489 

0.35099 0.17283 0.07888 

0.29745 0.14263 0.0474 

0.25755 0.12727 0.03171 

T
h

ia
m

et
h

o
x

am
 

0.96973 0.98966 0.99091 

0.8308 0.93646 0.93106 

0.61255 0.77437 0.78508 

0.51214 0.68773 0.68932 

0.33175 0.5465 0.56788 

0.24178 0.4216 0.44995 

0.17869 0.36529 0.39743 

0.13729 0.32656 0.3545 

0.12328 0.29759 0.32188 

 

Figure 3 shows the fitted equilibrium data for the Sips model which show the highest correlation coefficients (R2) 

comparing with those of Langmuir and Freundlich models. This occur for both pesticides and for all working temperatures. 

In addition, the qm value is 53.296 mg/g for thiamethoxam and 247.12 mg/g for deltamethrin. Obviously, the Sips isotherm, 

compared with the other two models was more suitable to describe the adsorption of pesticides on prepared adsorbents.  
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According to isotherm behavior it can be observed that in case of thiamethoxam adsorption process is exothermic in 

nature, while in the case of deltamethrin the process is endothermic since the pesticide amount on solid increase with 

temperature. 

When comparing the maximum adsorption capacity determined for the developed material with literature data, it can be 

observed superior qm values for deltamethrin. Hassan et al. [13] obtained a maximum value of 162.6 mg/g for the adsorption 

of deltamethrin on potassium hydroxide activated carbons prepared from pistachio nutshells (at 35°C), Al-Qodah et al. [14] 

obtained a value of 10.96 mg/g (at 25°C) for the adsorption on oil shale ash, while Ghafari et al. [15] registered values up 

to 41.7 mg/g for the adsorption on modified magnetic iron oxide nanoparticles. Regarding the adsorption of thiamethoxam, 

the experimental results also shows superior results, by comparison with literature data: Liu et al. [16] obtained an adsorption 

capacity of approx. 3 mg/g using magnetic graphene oxide–β-cyclodextrin, while Mir et al. [17] obtained a value of approx. 

7.43 mg/g for the adsorption on TiO2. 

 

Effect of temperature on the adsorption of pesticides on prepared adsorbent 

Adsorption isotherms obtained allow us to assess the effect of temperature on the adsorption process. It was found that 

higher temperature favored the adsorption of deltamethrin which suggests that the adsorption is endothermic in nature while 

for the thiamethoxam we observe an opposite behavior. The magnitude of thermodynamic parameters such as the changes 

in free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) has been calculated with the help of van’t Hoff plot using the 

following formulae: 

 

∆𝐺0 =  ∆𝐻0 + ∆𝑆0 

∆𝐺0 =  −𝑅𝑇 ln 𝐾𝑑 

ln 𝐾𝑑 =  
∆𝑆0

𝑅
−

∆𝐻0

𝑅𝑇
 

 

where R is gas constant (J/K mol), T is the absolute temperature (K) and Kd (L/g) is the adsorption equilibrium constant 

which is calculated by the ratio of amount of adsorbate adsorbed on unit mass of adsorbent to the amount remaining in the 

solution.       

The adsorption equilibrium constant, Kc, for the binding of pesticides to prepared adsorbent surface were calculated 

from the slope of the qe vs. Ce curve. The Kc values are expressed in L/g. In order to obtain a dimensionless parameter these 

values must be multiplied by water density (1000 g/L) [18]. Hence, by plotting lnKc versus 1/T the values ΔS0 and ΔH0 can 

be obtained from the intercept and slope (Table 5). 

 

 
Table 5 

VARIATION OF THE STANDARD GIBBS FREE ENERGY, ENTHALPY AND ENTROPY CALCULATED 

Pesticide Temperature (°C) ΔG0 (kJ/mol) ΔS0 (kJ/mol) ΔH0 (kJ/mol) 

Deltamethrin 10 21.73434 0.370891 83.11205 

20 21.45025 0.370891 83.11205 

30 29.21697 0.370891 83.11205 

Thiamethoxam 10 16.73628 -0.15851 -61.5289 

20 13.56012 -0.15851 -61.5289 

30 13.59543 -0.15851 -61.5289 

  

 

It is known that if ΔGo values goes up to – 20 KJ gmol-1, the process is in the range of physical adsorption while higher 

values of ΔGo fall in the chemical adsorption type of processes. 

Moreover, DH0 and DS0 were obtained from the slope and intercept of Van-Hoff plots of lnKc versus 1/T (Fig. 4) and the 

values are presented in Table 5. The negative enthalpy change (ΔH, kJ/mol) confirmed for thiamethoxam adsorption that in 

this case the removal is exothermic while in the case of deltamethrin the process is endothermic since ΔH have positive 

values. 
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Conclusions 

Previously presented magnetic composites were presented to be good adsorbents for the targeted pesticides. The Sips 

isotherm was found to be most adequate to describe the equilibrium process. Moreover, the adsorption experiments revealed 

that the used materials possess superior adsorption capacity when compared with literature data regarding the up-take of the 

selected active substances.  
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